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ABSTRACT
Blastocrithidia nonstop is a protist with a highly unusual nuclear genetic code, in which all three standard stop codons are 
reassigned to encode amino acids, with UAA also serving as a sole termination codon. In this study, we demonstrate that this 
parasitic flagellate is amenable to genetic manipulation, enabling gene ablation and protein tagging. Using preassembled Cas9 
ribonucleoprotein complexes, we successfully disrupted and tagged the non-essential gene encoding catalase. These advances 
establish this single-celled eukaryote as a model organism for investigating the malleability and evolution of the genetic code in 
eukaryotes.

1   |   Introduction

The family Trypanosomatidae (phylum Euglenozoa) is a group 
of obligatory parasitic protists with a wide host range that in-
cludes insects, vertebrates, plants, and even ciliates (Kostygov 
et al. 2021). These flagellates are non-taxonomically subdivided 
into monoxenous and dixenous species: monoxenous trypanoso-
matids develop in a single host (most commonly, an insect), while 
their dixenous kin switch between two hosts (Frolov et al. 2021; 
Lukeš et  al.  2018). Because of their medical (Leishmania and 
Trypanosoma spp.) and economical (Phytomonas spp.) im-
portance, research into this family has been traditionally re-
stricted to the dixenous parasites (Stuart et  al.  2008; Bruschi 

and Gradoni 2018; Jaskowska et al. 2015). Nevertheless, in the 
past decades, monoxenous trypanosomatids have started to 
draw increasing attention due to their negative effect on insect 
populations (Barribeau and Schmid-Hempel  2013; Hamilton 
et al. 2015), capacity to opportunistically infect vertebrates, in-
cluding humans (Maslov et  al.  2013; Rogerio et  al.  2023), and 
their pivotal role in inferring and understanding the evolution-
ary pathways leading to dixeny (Kostygov et al. 2024).

Numerous key molecular mechanisms, such as RNA editing, 
polycistronic transcription, extensive trans-splicing, GPI an-
choring of membrane proteins, and complex mitochondrial 
DNA (Clayton  2019; Aphasizheva et  al.  2020; Michaeli  2011; 
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Lukeš et  al.  2002) were initially discovered and characterized 
in trypanosomatids. They were later found to occur, to varying 
extents, in a wide range of eukaryotes (Lukeš et al. 2018, 2023). 
Moreover, due to their cheap axenic cultivation, amenability to 
forward and reverse genetics, availability of high-quality ge-
nome assemblies and annotations, and the ability of some of 
these species to infect humans, trypanosomatids now belong to 
the best studied protists, with outsized importance for our un-
derstanding of numerous evolutionary adaptations.

The number of trypanosomatid species with sequenced, as-
sembled, and annotated genomes that are amenable to genetic 
manipulations and, thus, considered model organisms, remains 
rather limited (Yurchenko et  al.  2021). The bottleneck here is 
not at the level of genomic sequencing or analysis (Albanaz 
et  al.  2023), but rather at the level of adaptability of different 
established techniques to a particular species or an isolate. The 
approach most commonly used within the last couple of years 
relies on different variations of the CRISPR-Cas9 technology 
(Beneke and Gluenz  2019; Yagoubat et  al.  2020; Lander and 
Chiurillo  2019). Nevertheless, classical methods based on ho-
mologous recombination or episomal expression are still broadly 
used (Kim et al. 2013; Feng et al. 2018; Kraeva et al. 2014; Pyrih 
et al. 2023).

Recently, members of the trypanosomatid genus 
Blastocrithidia were shown to be equipped with arguably 
one of the most bizarre variants of the nuclear genetic code, 
in which all three standard stop codons are reassigned to en-
code amino acids, with one of them (UAA) also serving as a 
sole stop codon (Záhonová et  al.  2016; Kachale et  al.  2023). 
Reassignment of all three stop codons in the nuclear genome 
appears to be highly restricted in nature. In addition to several 
Blastocrithidia species, it has only been documented in ciliates 
of the genera Condylostoma and Parduczia, and marine synd-
ineans of the genus Amoebophrya (Swart et al. 2016; Heaphy 
et  al.  2016; Bachvaroff  2019). In Blastocrithidia nonstop, the 
iconic representative of the genus Blastocrithidia, the fre-
quency of in-frame stop codons reversely correlates with gene 
expression level (Kachale et al. 2023), although this does not 
seem to affect the general metabolic capacity of this flagellate 
(Opperdoes et al. 2024). Moreover, its mitochondrial genome 
and transcriptome appear to be insulated from the nuclear 
code reassignment (Afonin et  al.  2024). It has been widely 
speculated that the altered genetic code may serve as a barrier 
protecting its bearers from viral infections and gene transfers 
(Holmes 2009; Taylor et al. 2013; Lajoie et al. 2013), and this 
prediction, albeit with low confidence due to the small num-
ber of available isolates, has been supported by evidence from 
Blastocrithidia spp. (Grybchuk et al. 2024).

Although departures from the standard (or canonical) genetic 
code have so far been mostly documented in the mitochondria 
(Žihala et al. 2020; Macher et al. 2023), more extensive sequenc-
ing of understudied eukaryotic lineages revealed a growing 
number of non-canonical codes in the nuclear genomes of pro-
tists (Pánek et al. 2017; Rotterová et al. 2024), with the domi-
nant position of ciliates (Swart et al. 2016; Heaphy et al. 2016; 
Gaydukova et  al.  2023; McGowan et  al.  2024). However, ex-
cept for a unique and still poorly understood amino acid re-
assignment described in several yeast lineages (Ó Cinnéide 

et al. 2024), all known non-canonical genetic codes evolved in 
protists that are either unavailable in culture, cultivable only 
with diverse bacteria, and/or for which methods of genetic 
manipulation have not yet been established. This is a major 
limitation for studying alterations of the genetic code in vivo, 
as almost no information other than of descriptive nature can 
be obtained from these organisms. However, B. nonstop is 
unique among the eukaryotes with non-canonical code as it 
is closely related to the iconic trypanosomatids, for which a 
wide range of methods of forward and reverse genetics have 
been established (Matthews  2015). As demonstrated herein, 
we were able to generate a stable gene ablation and tagging in 
this flagellate, which, to the best of our knowledge, represents 
the first genetic modification of a eukaryote with an altered 
nuclear genetic code. Moreover, it bears a promise to breach 
the experimental limitations currently imposed by these or-
ganisms. Indeed, converting the idiosyncratic B. nonstop into 
a model organism will offer an unprecedented opportunity to 
dissect and manipulate the molecular mechanisms governing 
departures from the standard genetic code. It may even serve 
as a platform for exploring what is possible in the evolutionary 
diversification of the genetic code, following the maxim “nor-
mals teach us rules, outliers teach us laws”.

2   |   Materials and Methods

2.1   |   Cell Culture and Species Validation

The culture of B. nonstop (isolate P57) (Kachale et al. 2023) was 
maintained in Schneider's Drosophila medium (VWR/Avantor, 
Radnor, USA) supplemented with 10% heat-inactivated Fetal 
Bovine Serum (Biowest, Nuaillé, France), 100 units/mL of pen-
icillin, 100 μg/mL of streptomycin (VWR/Avantor), and 8 μg/
mL of hemin (Sigma Aldrich/Merck, Saint Louis, USA) at 25°C, 
passaging it once every 2 weeks. In our hands, the B. nonstop 
culture reached a cell density of about 1.5 × 106 cells/ml. The spe-
cies identity was validated by amplifying and sequencing its 18S 
rRNA gene with primers S762 and S763 (Yurchenko et al. 2016).

2.2   |   Transfection and Selection of B. nonstop

2.2.1   |   Antibiotic Sensitivity

The IC50 values for selected antibiotics that are routinely used 
in trypanosomatid research were determined as described 
previously (Chmelová et  al.  2021). The following antibiotics 
were tested in a range from 0 to 500 μg/mL: blasticidin (Sigma 
Aldrich/Merck), geneticin G418 (Thermo Fisher Scientific, 
Waltham, USA), hygromycin (Carl Roth, Karlsruhe, Germany), 
and puromycin (Thermo Fisher Scientific).

2.2.2   |   Design of crRNA Sequences

The sequences of the 20 nucleotide (nt)-long crRNAs were de-
signed using the Eukaryotic Pathogen CRISPR guide RNA/
DNA Design Tool EuPaGDT (Peng and Tarleton  2015) with 
default parameters (SpCas9: gRNA length 20; PAM: NGG; off-
target PAM: NAG, NGA, where N denotes any nucleotide).
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2.2.3   |   Preparation of a Donor Sequence 
for Gene Ablation

An expression cassette for the V5-tagged neomycin-kanamycin 
phosphotransferase gene (neomycin, Figure  1A) providing resis-
tance against G418 and targeting the B. nonstop gene encoding cat-
alase (Bnon_00487, GenBank accession number MK934828) was 
created by fusion PCR (Merritt and Stuart 2013). Flanking UTRs 
(5′ UTR of a putative member of the glycoside hydrolase family 
3, Bnon_04072 and 3′ UTR of a putative L15 ribosomal protein, 
Bnon_00321) were chosen based on their expression levels (RPKM 
[Reads Per Kilobase per Million mapped reads] values 33 and 4066 
for GH3 and Rpl15, respectively (Kachale et al. 2023)). In addition, 
these genes were found in different long contigs, thus excluding the 
potential appearance of large deletions if intra-chromosomal re-
combination events happen. These UTR sequences were amplified 
using primer pairs F1-KO/F2-KO and F5-KO/F6-KO (Figure S1, 

Table S1) for the 5′-and 3′ UTRs, respectively. The sequence of the 
3 × V5-tagged neomycin-kanamycin phosphotransferase gene was 
amplified from the plasmid p57-V5 + NeoR (GenBank: MN047315) 
(Faktorová et al. 2020) using primers F3-KO and F4-KO and fused 
with UTRs using primers F7-KO and F8-KO that included 30-nt 
homology regions with sequences of the catalase locus (Figure S1, 
Table S1).

2.2.4   |   Preparation of a Donor Sequence 
for Gene Tagging

An expression cassette for the 3 × V5-tagged neomycin followed 
by the intergenic region and 3 × HA-tagged N-terminus of the B. 
nonstop catalase was created by fusion PCR (Figure 2A). The 3′ 
arm is homologous to the first 30 nt following the ATG codon of 
the catalase gene.

FIGURE 1    |    Ablation of catalase in B. nonstop. (A) Scheme of the knock-out experiment. Homology arms are shown in grey; crRNA sites are 
marked by black triangles. Primers used for PCR validation and sizes of the corresponding amplification product are shown. (B) PCR validation of 
the successful ablation of both catalase alleles. M is 1 kb-ladder molecular weight marker; WT, KO and NC stand for the wild-type, knock-out, and 
negative (no template) control, respectively. (C) Validation of the V5-neomycin expression by western blotting. Molecular weight sizes in kDa are in-
dicated on the left; probing with anti-tubulin antibody served to control loading. (D) Activity test validation of the successful ablation of both catalase 
alleles. (E) Genomic confirmation of the successful ablation of both catalase alleles. Chromosomal locus of the Bnon_00487 and surrounding loci is 
shown on the top. Symbol I indicates indels.
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2.2.5   |   Preparation of Cas9 
Ribonucleoprotein Complexes

Alt-R CRISPR-Cas9 nuclease V3, crRNAs and tracrRNA 
(Table  S1) were synthesized by Integrated DNA Technologies 
(IDT, Coralville, USA). The Cas9 ribonucleoprotein was pre-
pared as described previously (Nomura et  al.  2020). In brief, 
equal amounts of TracrRNA and crRNA (100 μM each) were 
mixed and heated at 95°C for 5 min to disrupt potential sec-
ondary structures, followed by cooling to 20°C at the rate of 
−0.1°C/s. Next, the Cas9 protein (62 μM) was added to the mix-
ture and the reaction was incubated at 20°C for 15 min.

2.2.6   |   Transfection

Forty million cells were electroporated with 5 μg of Cas9 ribo-
nucleoprotein along with 5 μg of donor DNA using one pulse of 
the X-033 program in the Amaxa Nucleofector IIb (Lonza, Basel, 
Switzerland). Cells were recovered in antibiotic-free cultivation 
medium for 16 h at 25°C and then selected for 21 days in the pres-
ence of 100 μg/mL of G418.

2.3   |   Validation of Gene Ablation and Tagging in  
B. nonstop

Catalase gene ablation was validated by: (i) The diagnostic PCR 
with primers Int1, Int2, and Int3 (Figure 1, Table S1), (ii) west-
ern blotting using horseradish peroxidase-conjugated monoclo-
nal anti-V5 antibody (catalog number R96125, Thermo Fisher 
Scientific) and monoclonal anti-α-tubulin antibody (catalog 
number T9026, Sigma Aldrich/Merck) for the loading control 
diluted 1:1000 and 1:5000, respectively, and (iii) the catalase 
activity test as described previously (Sádlová et al. 2021). In ad-
dition, total genomic DNA of the catalase−/− cells was isolated 

and sequenced at Macrogen Europe (Amsterdam, Netherlands) 
as described previously (Albanaz et  al.  2021). Raw DNA-seq 
reads were adapter and quality trimmed using BBDuk v. 38.98 
(Bushnell et al. 2017) with the following parameters: qtrim = rl; 
trimq = 20; ktrim = r; k = 22; mink = 11; hdist = 2; tpe; tbo. 
Trimmed reads were mapped onto the reference B. nonstop ge-
nome (Kachale et  al.  2023) using Bowtie2 v. 2.5.2 (Langmead 
and Salzberg  2012) and SAMtools v. 1.18 (Li et  al.  2009), and 
visualized using IGV v. 2.8.2 (Robinson et al. 2011).

The tagging of catalase was validated by diagnostic PCR with 
primers Int1, Int2, and Int3 (Figure  2, Table  S1) and western 
blotting using monoclonal anti-HA antibody (catalog number 
26183, Thermo Fisher Scientific) diluted 1:1000 followed by 
rabbit anti-mouse IgG antibody (catalog number SAB5600195, 
Sigma Aldrich/Merck) diluted 1:10,000. Western blotting with 
anti-tubulin antibody served as a loading control.

3   |   Results and Discussion

For the “proof of principle” that B. nonstop can be genetically 
modified, we selected a gene encoding catalase. The choice 
was determined by three factors: (i) the genomes of most try-
panosomatids do not encode catalase, so the enzyme appears 
to be dispensable (Opperdoes et  al.  2016; Škodová-Sveráková 
et al.  2020); (ii) the ablation of catalase in another trypanoso-
matid (Leptomonas seymouri) had a very limited, if any, effect 
in vitro and in the experimental infection of the insect host of 
this parasite (Chmelová et al. 2024); (iii) the gene is expressed at 
the intermediate level in B. nonstop as compared to other genes 
(ranked 4397 out of 7258 transcripts based on the RPKM value 
(Kachale et al. 2023)).

First, we determined the IC50 values for four antibiotics that are 
routinely used in trypanosomatid research. The values were: 

FIGURE 2    |    Tagging of catalase in B. nonstop. (A) Scheme of the tagging experiment. Primers used for PCR validation and sizes of the correspond-
ing amplification product are shown. (B) PCR validation of the successful tagging of catalase. M is 1 kb-ladder molecular weight marker; WT and Mut 
stand for the wild-type and tagged alleles, respectively, NC stands for the negative (no template) control. (C) Validation of the HA-tagged catalase 
expression by western blotting. Molecular weight sizes in kDa are indicated on the left; abbreviations WT and Mut are as above; probing with anti-
tubulin antibody served to control loading. The non-specific lower band after probing with anti-HA antibody served as an additional loading control.
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13.5 ± 4.5; 31 ± 6; 13.5 ± 1.5, and 13 ± 1 μg/mL for blasticidin, hy-
gromycin, G418, and puromycin, respectively. These are ranges 
comparable with other trypanosomatids and, hence, applicable 
for selection purposes in follow-up studies.

For knock-out, we decided to adopt a recently developed highly 
efficient method of genetic modification that relies on the preas-
sembled Cas9 ribonucleoprotein complexes (Nomura et al. 2020, 
2019) to ablate catalase in B. nonstop. In the resultant cell line 
(hereafter named KO) (Figure 1A), a complete deletion of both 
alleles of catalase was documented. It was confirmed on the 
DNA level by diagnostic PCR (Figure 1B), on the protein level 
by western blotting (Figure 1C) and the catalase activity test (a 
production of molecular oxygen that manifests itself by “bub-
bling”) (Figure 1D). Finally, total genomic DNA obtained from 
the catalase−/− B. nonstop cells was sequenced, and the reads 
were mapped onto the wild-type reference genome assembly 
(Kachale et al. 2023), confirming a successful elimination of the 
target gene in the KO cell line (Figure 1E). Our expectation that 
this peculiar gene may be dispensable under the cultivation con-
ditions proved correct. Next, we tagged B. nonstop catalase with 
an HA tag using a similar strategy (Figure 2) and validated it by 
diagnostic PCR (Figure  2B) and western blotting (Figure  2C). 
The target protein was successfully tagged, confirming the 
functionality of yet another type of genetic manipulation.

In our opinion, the most important aspect of the presented 
study is that we were able to demonstrate that a protist with a 
non-canonical nuclear genetic code that departed from the clas-
sical molecular biology textbooks in a rather extreme fashion 
is genetically tractable. The presented results potentially open 
a whole new research direction. Indeed, major efforts are cur-
rently being invested in compressing the standard genetic code, 
namely, generating an artificial genetic code in living organisms 
that would allow liberation of certain codons for the incorpora-
tion of non-canonical amino acids (Mukai et al. 2017). In ground-
breaking studies performed in Escherichia coli, selected codons 
specifying the insertion of a given amino acid, for which other 
codons remained available, were systematically replaced across 
the genome (Fredens et al. 2019), followed by an indispensable 
elimination of their cognate tRNAs (Robertson et  al.  2021; 
Zürcher et al. 2022). The very first genetic code contraction has 
been achieved by replacing all the UAG stop codons with UAA, 
thus allowing potential repurposing of the former codon (Lajoie 
et al. 2013). As a matter of fact, a very similar reassignment oc-
curred in B. nonstop, as this parasitic protist uses UAA as its sole 
termination codon (Kachale et  al.  2023). Converting this spe-
cies into a genetically tractable model will allow exciting further 
in vivo experiments, which might include manipulations with 
stop codons, amino acyl-tRNA synthetases, and release factors 
in a eukaryote in which genetic code contractions have been 
achieved purely by evolutionary processes that likely occurred 
millions of years ago.
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